Part Number Hot Search : 
HYB51 C7885G 74ACT373 133BG XR33053 DL4933 LC78836 74LV2
Product Description
Full Text Search
 

To Download SRC4194IPAGR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features  automatic sensing of input-to-output sampling ratio  wide input-to-output sampling range: 16:1 to 1:16  supports input and output sampling rates up to 212khz  dynamic range: 144db (?60dbfs input, bw = 20hz to f s /2)  thd+n: ?140db (0dbfs input, bw = 20hz to f s /2)  high-performance, linear-phase digital filtering with better than 140db of stop band attenuation  flexible audio serial ports: ? master or slave mode operation ? supports i 2 s, left-justified, right-justified, and tdm data formats ? tdm mode allows daisy-chaining of up to four devices  supports 24-, 20-, 18-, or 16-bit input and output data: ? all output data is dithered from the internal 28-bit data path  serial peripheral interface (spi) ? port supports register read and write operations in software mode  bypass mode: ? routes input port data directly to the output port  four group delay options for the interpolation filter  direct downsampling option for the decimation filter  digital de-emphasis filter: ? user-selectable for 32khz, 44.1khz, and 48khz sampling rates  soft mute function  programmable digital output attenuation (software mode only): ? 256 steps: 0db to ?127.5db with 0.5db steps  input-to-output sampling ratio readback (software mode only)  power-down modes  supports operation from a single +1.8v or +3.3v power supply  available in a tqfp-64 package applications  digital mixing consoles  digital audio workstations  audio distribution systems  broadcast studio equipment  general digital audio processing description the src4194 is a four-channel, asynchronous sample rate converter (asrc), designed for professional and broadcast audio applications. the src4194 combines a wide input-to-output sampling ratio with outstanding dynamic range and ultra low distortion. the input and output serial ports support the most common audio data formats, as well as a time division multiplexed (tdm) format. this allows the src4194 to interface to a wide range of audio data converters, digital audio receivers and transmitters, and digital signal processors. the src4194 may be operated in hardware mode as a standalone pin-programmed device, with dedicated control pins for serial port mode, audio data format, soft mute, bypass, and digital filtering functions. alternatively, the src4194 may be operated in software mode, where a four-wire serial peripheral interface (spi) port provides access to internal control and status registers. the src4194 operates from either a +1.8v core supply or a +3.3v core supply. when operating from +3.3v, the +1.8v required by the core logic is derived from an internal voltage regulator. the src4194 also requires a digital i/o supply, which operates from +1.65v to +3.6v. the src4194 is available in a tqfp-64 package. patents pending. src4194 sbfs025a ? june 2004 ? revised july 2004 4-channel, asynchronous sample rate converter www.ti.com copyright ? 2004, texas instruments incorporated please be aware that an important notice concerning availability, standard warranty, and use in critical applications of t exas instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. all trademarks are the property of their respective owners.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 2 absolute maximum ratings (1) core supply v oltage vdd18 ?0.3v to +2.0v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vdd33 ?0.3v to +4.0v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . digital i/o supply voltage, v io ?0.3v to +4.0v . . . . . . . . . . . . . . . . digital input v oltage ?0.3v to +4.0v . . . . . . . . . . . . . . . . . . . . . . . . . operating case temperature range, t c ?40 c to +85 c . . . . . . . . storage temperature range, t stg ?65 c to +150 c . . . . . . . . . . . (1) stresses above these ratings may cause permanent damage. exposure to absolute maximum conditions for extended periods may degrade device reliability. these are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not supported. this integrated circuit can be damaged by esd. texas instruments recommends that all integrated circuits be handled with appropriate precautions. failure to observe proper handling and installation procedures can cause damage. esd damage can range from subtle performance degradation to complete device failure. precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ordering information for the most current package and ordering information, see the package option addendum located at the end of this data sheet. electrical characteristics all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. src4194 parameter conditions min typ max units dynamic performance resolution 24 bits input sampling frequency, f sin 4 212 khz output sampling frequency, f sout 4 212 khz input/output sampling ratio upsampling 1:16 downsampling 16:1 dynamic range (1) bw = 20hz to f sout /2, ?60dbfs input f in = 1khz, a-weighted 44.1khz:48khz 143 db 48khz:44.1khz 143 db 48khz:96khz 143 db 44.1khz:192khz 141 db 96khz:48khz 144 db 192khz:12khz 144 db 192khz:32khz 144 db 192khz:48khz 144 db 32khz:48khz 143 db 12khz:192khz 141 db total harmonic distortion + noise (1) bw = 20hz to f sout /2, 0dbfs input f in = 1khz, unweighted 44.1khz:48khz ?140 db 48khz:44.1khz ?140 db 48khz:96khz ?140 db 44.1khz:192khz ?137 db 96khz:48khz ?140 db 192khz:12khz ?140 db 192khz:32khz ?141 db 192khz:48khz ?141 db 32khz:48khz ?140 db 12khz:192khz ?137 db interchannel gain mismatch 0 db interchannel phase deviation 0 degrees (1) dynamic performance is measured with an audio precision system two cascade or cascade plus test system. (2) f smin = min (f sin , f sout ). (3) f smax = max (f sin , f sout ). (4) power-supply current for the power-down modes is measured without loading. (5) dynamic power-supply current measurements are performed with 2ma active loads on the excercized outputs.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 3 electrical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. src4194 parameter units max typ min conditions digital attenuation software mode only minimum 0 db maximum ?127.5 db step size 0.5 db mute attenuation 24-bit word length ?144 db digital interpolation filter characteristics passband 0.4535 f sin hz passband ripple 0.007 db transition band 0.4535 f sin 0.5465 f sin hz stop band 0.5465 f sin hz stop band attenuation ?144 db group delay (64 sample buffer) decimation filter enabled 102.53125/f sin seconds group delay (64 sample buffer) direct downsampling enabled 102/f sin seconds group delay (32 sample buffer) decimation filter enabled 70.53125/f sin seconds group delay (32 sample buffer) direct downsampling enabled 70/f sin seconds group delay (16 sample buffer) decimation filter enabled 54.53125/f sin seconds group delay (16 sample buffer) direct downsampling enabled 54/f sin seconds group delay (8 sample buffer) decimation filter enabled 46.53125/f sin seconds group delay (8 sample buffer) direct downsampling enabled 46/f sin seconds digital decimation filter characteristics passband 0.4535 f sout hz passband ripple 0.008 db transition band 0.4535 f sout 0.5465 f sout hz stop band 0.5465 f sout hz stop band attenuation ?143 db group delay decimation filter decimation filter enabled 36.46875/f sout seconds direct downsampling direct downsampling enabled 0 seconds digital de-emphasis de-emphasis error for f s = 32khz, 44.1khz, or 48khz de-emphasis enabled 0.001 db digital i/o characteristics high-level input voltage v ih 0.7 v io v io v low-level input voltage v il 0 0.3 v io v high-level input current i ih 0.5 10 a low-level input current i il 0.5 10 a high-level output voltage v oh i o = ?4ma 0.8 v io v io v low-level output voltage v ol i o = +4ma 0 0.2 v io v input capacitance c in 3 pf switching characteristics reference clock timing rcki frequency (2)(3) 128 f smin 50 mhz rcki period t rckip 20 1/(128 f smin ) ns rcki pulsewidth high t rckih 0.4 t rckip ns rcki pulsewidth low t rckil 0.4 t rckip ns reset timing rst pulsewidth low t rstl 500 ns delay following rst rising edge software mode only 500 s input serial port timing lrcki to bcki setup time t lris 10 ns bcki pulsewidth high t sih 10 ns bcki pulsewidth low t sil 10 ns sdin data setup time t ldis 10 ns sdin data hold time t ldih 10 ns (1) dynamic performance is measured with an audio precision system two cascade or cascade plus test system. (2) f smin = min (f sin , f sout ). (3) f smax = max (f sin , f sout ). (4) power-supply current for the power-down modes is measured without loading. (5) dynamic power-supply current measurements are performed with 2ma active loads on the excercized outputs.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 4 electrical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. src4194 parameter units max typ min conditions switching characteristics (continued) output serial port timing sdout data delay time t dopd 10 ns sdout data hold time t doh 2 ns bcko pulsewidth high t soh 10 ns bcko pulsewidth low t sol 5 ns tdm mode timing lrcko setup time t lros 10 ns lrcko hold time t lroh 10 ns tdmi data setup time t tdms 10 ns tdmi data hold time t tdmh 10 ns spi timing cclk frequency 25 mhz cdata setup time t cds 12 ns cdata hold time t cdh 8 ns cs falling to cclk rising t cscr 15 ns cclk falling to cs rising t cfcs 12 ns cclk falling to cdout data valid t cfdo 5 ns cs rising to cdout high impedance t csz 5 ns power supplies (4, 5) operating voltage vdd18 regen = 0 +1.65 +1.8 +2.0 v vdd33 regen = 1 +3.0 +3.3 +3.6 v vio +1.65 +3.3 +3.6 v supply current vdd18 = +1.8v, v io = +1.8v, regen = 0 idd, hard power-down rst = 0, no clocks 100 a idd, soft power-down pdn bit = 0, no clocks 100 a idd, dynamic f sin = 96khz, f sout = 192khz 80 ma iio, hard power-down rst = 0, no clocks 100 a iio, soft power-down pdn bit = 0, no clocks 100 a iio, dynamic f sin = 96khz, f sout = 192khz 6 ma total power dissipation vdd18 = +1.8v, v io = +1.8v, regen = 0 p d , hard power-down rst = 0, no clocks 1 mw p d , soft power-down pdn bit = 0, no clocks 360 w p d , dynamic f sin = f sout = 192khz 155 mw supply current vdd33 = +3.3v, v io = +3.3v, regen = 1 idd, hard power-down rst = 0, no clocks 100 a idd, soft power-down pdn bit = 0, no clocks 6 ma idd, dynamic f sin = 96khz, f sout = 192khz 90 ma iio, hard power-down rst = 0, no clocks 100 a iio, soft power-down pdn bit = 0, no clocks 100 a iio, dynamic f sin = 96khz, f sout = 192khz 6 ma total power dissipation vdd33 = +3.3v, v io = +3.3v, regen = 1 p d , hard power-down rst = 0, no clocks 1 mw p d , soft power-down pdn bit = 0, no clocks 21 mw p d , dynamic f sin = f sout = 192khz 320 mw (1) dynamic performance is measured with an audio precision system two cascade or cascade plus test system. (2) f smin = min (f sin , f sout ). (3) f smax = max (f sin , f sout ). (4) power-supply current for the power-down modes is measured without loading. (5) dynamic power-supply current measurements are performed with 2ma active loads on the excercized outputs.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 5 pin configuration top view tqfp 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 ifmtb0 ifmtb1 ifmtb2 ofmtb0 ofmtb1 owlb0 owlb1 bypb lgrpb0 lgrpb1 ddnb demb0 demb1 (cdout) modeb0 (cs) modeb1 (cclk) modeb2 (cdin) sdouta bckoa lrckoa tdmia bckia lrckia sdina dgnd v io sdinb lrckib bckib tdmib lrckob bckob sdoutb ratioa rdya mutea rckia rst h/s dgnd vdd33 vdd33 regen vdd18 vdd18 rckib muteb rdyb ratiob 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ifmta0 ifmta1 ifmta2 ofmta0 ofmta1 owla0 owla1 bypa lgrpa0 lgrpa1 ddna dema0 dema1 modea0 modea1 modea2 64 63 62 61 60 59 58 57 56 55 54 17 18 19 20 21 22 23 24 25 26 27 53 28 29 30 31 32 52 51 50 49 src4194
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 6 pin descriptions pin # name i/o description 1 ifmta0 input src a audio input data format (1) 2 ifmta1 input src a audio input data format (1) 3 ifmta2 input src a audio input data format (1) 4 ofmta0 input src a audio output data format (1) 5 ofmta1 input src a audio output data format (1) 6 owla0 input src a audio output data word length (1) 7 owla1 input src a audio output data word length (1) 8 bypa input src a bypass mode (active high) 9 lgrpa0 input src a low group delay mode (1) 10 lgrpa1 input src a low group delay mode (1) 11 ddna input src a direct downsampling mode (active high) (1) 12 dema0 input src a digital de-emphasis filter mode (1) 13 dema1 input src a digital de-emphasis filter mode (1) 14 modea0 input src a serial port mode (1) 15 modea1 input src a serial port mode (1) 16 modea2 input src a serial port mode (1) 17 ratioa output src a ratio flag 18 rdya output src a ready flag (active low) 19 mutea input src a output soft mute 20 rckia input src a reference clock 21 rst input reset and power-down (active low) 22 h/s input control mode (0 = software, 1 = hardware) 23 dgnd ground digital ground 24, 25 vdd33 power core supply, +3.3v. required when regen is high. when regen is low, vdd33 must be left unconnected. 26 regen input voltage regulator enable (active high) 27, 28 vdd18 power core supply, +1.8v. required when regen is low. when regen is high, vdd18 must be left unconnected. 29 rckib input src b reference clock 30 muteb input src b output soft mute 31 rdyb output src b ready flag (active low) 32 ratiob output src b ratio flag 33 modeb2 or cdin input src b serial port mode (1) or spi port serial data input (2) 34 modeb1 or cclk input src b serial port mode (1) or spi port data clock (2) 35 modeb0 or cs input src b serial port mode (1) or spi port chip select (active low) (2) 36 demb1 or cdout i/o src b digital de-emphasis filter mode (1) or spi port serial data output (2) 37 demb0 input src b digital de-emphasis filter mode (1) 38 ddnb input src b direct downsampling mode (active high) (1) 39 lgrpb1 input src b low group delay mode (1) 40 lgrpb0 input src b low group delay mode (1) 41 bypb input src b bypass mode (active high) 42 owlb1 input src b audio output data word length (1) 43 owlb0 input src b audio output data word length (1) 44 ofmtb1 input src b audio output data format (1) 45 ofmtb0 input src b audio output data format (1) 46 ifmtb2 input src b audio input data format (1) 47 ifmtb1 input src b audio input data format (1) 48 ifmtb0 input src b audio input data format (1) 49 sdoutb output src b audio output data 50 bckob i/o src b audio output bit clock 51 lrckob i/o src b audio output left/right or word clock 52 tdmib input src b tdm input data (tdm format only) 53 bckib i/o src b audio input bit clock 54 lrckib i/o src b audio input left/right or word clock 55 sdinb input src b audio input data 56 v io power digital i/o supply, +1.65v to +3.6v 57 dgnd ground digital ground 58 sdina input src a audio input data 59 lrckia i/o src a audio input left/right or word clock 60 bckia i/o src a audio input bit clock 61 tdmia input src a tdm input data (tdm format only) 62 lrckoa i/o src a audio output left/right or word clock 63 bckoa i/o src a audio output bit clock 64 sdouta output src a audio output data (1) disabled in software control mode. (2) disabled in hardware control mode.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 7 typical characteristics all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) amplitude vs frequency 20 100 1k 16k 10k frequency (hz) f sin :f sout = 32khz:32khz (asynchronous) f in = 1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) amplitude vs frequency 20 100 1k 22k 10k frequency (hz) f sin :f sout = 32khz:44.1khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) amplitude vs frequency 20 100 1k 24k 10k frequency (hz) f sin :f sout = 32khz:48khz f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) amplitude vs frequency 20 100 1k 16k 10k frequency (hz) f sin :f sout = 32khz:32khz (asynchronous) f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) amplitude vs frequency 20 100 1k 22k 10k frequency (hz) f sin :f sout = 32khz:44.1khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) amplitude vs frequency 20 100 1k 24k 10k frequency (hz) f sin :f sout = 32khz:48khz f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 8 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 16k 10k frequency (hz) f sin :f sout = 44.1khz:32khz f in = 1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 44.1khz:44.1khz (asynchronous) f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 44.1khz:48khz f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 16k 10k frequency (hz) f sin :f sout = 44.1khz:32khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 44.1khz:44.1khz (asynchronous) f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 44.1khz:48khz f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 9 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 44k 10k frequency (hz) f sin :f sout = 44.1khz:88.2khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 44.1khz:96khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 44.1khz:192khz f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 44k 10k frequency (hz) f sin :f sout = 44.1khz:88.2khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 44.1khz:96khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 44.1khz:192khz f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 10 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 16k 10k frequency (hz) f sin :f sout = 48khz:32khz f in = 1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 48khz:44.1khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 48khz:48khz (asynchronous) f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 16k 10k frequency (hz) f sin :f sout = 48khz:32khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 48khz:44.1khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 48khz:48khz (asynchronous) f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 11 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 48khz:96khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 48khz:192khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 96khz:44.1khz f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 48khz:96khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 48khz:192khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 96khz:44.1khz f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 12 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 96khz:48khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 96khz:96khz (asynchronous) f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 96khz:192khz f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 96khz:48khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 96khz:96khz (asynchronous) f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 96khz:192khz f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 13 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 192khz:44.1khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 192khz:48khz f in =1khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 192khz:96khz f in =1khz with 0dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 192khz:44.1khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 192khz:48khz f in =1khz with ? 60dbfs amplitude ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 192khz:96khz f in =1khz with ? 60dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 14 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 44.1khz:48khz f in = 20khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 48khz:48khz (asynchronous) f in = 20khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 24k 10k frequency (hz) f sin :f sout = 96khz:48khz f in = 20khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 22k 10k frequency (hz) f sin :f sout = 48khz:44.1khz f in = 20khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 48k 10k frequency (hz) f sin :f sout = 48khz:96khz f in = 20khz with 0dbfs amplitude 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 ? 160 ? 170 ? 180 ? 190 ? 200 amplitude (dbfs) fft plot 20 100 1k 96k 10k frequency (hz) f sin :f sout = 192khz:192khz (asynchronous) f in = 80khz with 0dbfs amplitude
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 15 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f so ut = 44.1khz:48khz f in =1khz bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f so ut = 48khz:48khz (asynchronous) f in =1khz bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f so ut = 96khz:48khz f in =1khz bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f so ut = 48khz:44.1khz f in =1khz bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f so ut = 48khz:96khz f in =1khz bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f so ut = 96khz:96khz (asynchronous) f in =1khz bw = 10hz to f sout /2
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 16 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input amplitude ? 140 0 ? 120 ? 100 ? 80 ? 60 ? 40 ? 20 input amplitude (dbfs) f sin :f sout = 192khz:192khz (asynchronous) f in =1khz bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 20k 10k input frequency (hz) f sin :f sout = 48khz:44.1khz input amplitude = 0dbfs bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 20k 10k input frequency (hz) f sin :f sout = 48khz:96khz input amplitude = 0dbfs bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 20k 10k input frequency (hz) f sin :f sout = 44.1khz:48khz input amplitude = 0dbfs bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 20k 10k input frequency (hz) f sin :f sout = 48khz:48khz (asynchronous) input amplitude = 0dbfs bw = 10hz to f sout /2 ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 20k 10k input frequency (hz) f sin :f sout = 96khz:48khz input amplitude = 0dbfs bw = 10hz to f sout /2
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 17 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 40k 10k input frequency (hz) f sin :f sout = 96khz:96khz (asynchronous) input amplitude = 0dbfs bw = 10hz to f sout /2 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) linearity ? 150 ? 130 0 ? 110 ? 90 ? 70 ? 50 ? 30 ? 10 input amplitude (dbfs) f sin :f sout = 32khz:32khz (asynchronous) f in = 200hz 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) linearity ? 150 ? 130 0 ? 110 ? 90 ? 70 ? 50 ? 30 ? 10 input amplitude (dbfs) f sin :f sout = 96khz:96khz (asynchronous) f in = 200hz ? 120 ? 122 ? 124 ? 126 ? 128 ? 130 ? 132 ? 134 ? 136 ? 138 ? 140 ? 142 ? 144 ? 146 ? 148 ? 150 ? 152 ? 154 ? 156 ? 158 ? 160 thd+n (db) thd+n vs input frequency 20 100 1k 80k 10k input frequency (hz) f sin :f sout = 192khz:192khz (asynchronous) input amplitude = 0dbfs bw = 10hz to f sout /2 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) linearity ? 150 ? 130 0 ? 110 ? 90 ? 70 ? 50 ? 30 ? 10 input amplitude (dbfs) f sin :f sout = 48khz:48khz (asynchronous) f in = 200hz 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) linearity ? 150 ? 130 0 ? 110 ? 90 ? 70 ? 50 ? 30 ? 10 input amplitude (dbfs) f sin :f sout = 192khz:192khz (asynchronous) f in = 200hz
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 18 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) frequency response 024 32 6 8 10 12 14 16 18 20 22 24 26 28 30 input frequency (khz) f sin :f sout = 192khz:32khz input amplitude = 0dbfs 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) frequency response 060 5 10152025303540455055 input frequency (khz) f sin :f so ut = 192khz:96khz input amplitude = 0dbfs 0 ? 0.005 ? 0.010 ? 0.015 ? 0.020 ? 0.025 ? 0.030 output amplitude (dbfs) pass band ripple 02 22 4 6 8 101214161820 input frequency (khz) f sin :f sout = 48khz:48khz (asynchronous) 0 ? 10 ? 20 ? 30 ? 40 ? 50 ? 60 ? 70 ? 80 ? 90 ? 100 ? 110 ? 120 ? 130 ? 140 ? 150 output amplitude (dbfs) frequency response 050 5 1015202530354045 input frequency (khz) f sin :f sout = 192khz:48khz input amplitude = 0dbfs 0 ? 0.005 ? 0.010 ? 0.015 ? 0.020 ? 0.025 ? 0.030 output amplitude (dbfs) pass band ripple 01 15 234567891011121314 input frequency (khz) f sin :f sout = 32khz:32khz (asynchronous) 0 ? 0.005 ? 0.010 ? 0.015 ? 0.020 ? 0.025 ? 0.030 output amplitude (dbfs) pass band ripple 0510 4 5 15 20 25 30 35 40 input frequency (khz) f sin :f sout = 96khz:96khz (asynchronous)
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 19 typical characteristics (continued) all specifications at t a = +25 c, vdd33 = +3.3v, v io = +3.3v, regen = high, and vdd18 floating, unless otherwise noted. 0 ? 0.005 ? 0.010 ? 0.015 ? 0.020 ? 0.025 ? 0.030 output amplitude (dbfs) pass band ripple 01020 90 30 40 50 60 70 80 input frequency (khz) f sin :f sout = 192khz:192khz (asynchronous)
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 20 product overview the src4194 is a four-channel, asynchronous sample rate converter (asrc), implemented as two stereo sections, referred to as src a and src b. operation at input and output sampling frequencies up to 212khz is supported, with a continuous input/output sampling ratio range of 16:1 to 1:16. excellent dynamic range and thd+n are achieved by employing high-performance, linear-phase digital filtering with better than 140db of image rejection. the digital filters provide settings for lower latency processing, including low group delay options for the interpolation filter and a direct downsampling option for the decimation filter. digital de-emphasis filtering is included, supporting 32khz, 44.1khz, and 48khz sampling frequencies. the audio input and output ports support standard audio data formats, as well as a time division multiplexed (tdm) format. word lengths of 24-, 20-, 18-, and 16-bits are supported. input and output ports may operate in slave mode, deriving their word and bit clocks from external input and output devices. alternatively, one port may operate in master mode while the other remains in slave mode. in master mode, the lrck and bck clocks are derived from the reference clock inputs, either rckia or rckib. the flexible configuration options for the input and output ports allow connections to a variety of audio data converters, digital audio interface devices, and digital signal processors. a bypass mode is included, which allows audio data to be passed directly from the input port to the output port, bypassing the asrc function. the bypass option is useful for passing through compressed or encoded audio data, as well as non-audio data (that is, control or status information). a soft mute function is available for the src4194 in both hardware and software modes. digital output attenuation is available only in software mode. both soft mute and digital attenuation functions provide artifact-free opera- tion. the mute attenuation is typically ?144db, while the digital attenuation function is adjustable from 0db to ?127.5db in 0.5db steps. the src4194 includes a four-wire spi port, which is used to access on-chip control and status registers in software mode. the spi port facilitates interfacing to microproces- sors or digital signal processors that support synchronous serial peripherals. in hardware mode, dedicated control pins are provided for the majority of the src4194 functions. these pins can be hard-wired or driven by logic or host control. functional block diagram figure 1 shows a functional block diagram of the src4194. the src4194 is segmented into two stereo src sections, referred to as src a and src b. each section can operate independently from the other. each section has individual sets of configuration pins in hardware mode, and separate banks of control and status registers in software mode. ifmta0 ifmta1 ifmta2 ofmta0 ofmta1 owla0 owla1 bypa control src a rate estimator f sout rdya f sin ratioa lgrpa0 lgrpa1 ddna dema0 dema1 modea0 modea1 modea2 mutea lgrpb0 lgrpb1 ddnb demb0 demb1 (cdout) modeb0 (cs) modeb1 (cclk) modeb2 (cdin) muteb control src b spi port and reset ifmtb0 ifmtb1 ifmtb2 ofmtb0 ofmtb1 owlb0 owlb1 bypb h/s rst v io dgnd vdd18 (2) vdd33 (2) dgnd regen lrckia bckia sdina rckia input serial port digital de?emphasis and interpolation filters re? sampler digital decimation filter output serial port lrckoa bckoa sdouta tdmia rate estimator f sout rdyb f sin ratiob lrckib bckib sdinb rckib input serial port digital de?emphasis and interpolation filters re? sampler digital decimation filter output serial port lrckob bckob sdoutb tdmib figure 1. functional block diagram
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 21 operation for src a and src b is identical. audio data is received at the input serial port, clocked by either the audio source device in slave mode, or by the src4194 in master mode. the output port data is clocked by either the audio output device in slave mode, or by the src4194 in master mode. the input data is passed through interpolation filters that upsample the data, which is then passed on to the re-sampler. the rate estimator compares the input and output sampling frequencies by comparing lrcki, lrcko, and a reference clock. the results of the rate estimation are utilized to configure the re-sampler coefficients and data pointers. the output of the re-sampler is passed on to either the decimation filter or direct downsampler function. the decimation filter performs downsampling and anti-alias filtering functions, and is required when the output sampling frequency is equal to or lower than the input sampling frequency. the direct downsampler function does not provide any filtering, and may be used in cases when the output sampling frequency is greater than the input sampling frequency. the advantage of the direct downsampling function is a significant reduction in the group delay associated with the decimation function, allowing lower latency processing. reference clock the src4194 includes two reference clock inputs, one each for src a and src b. the reference clocks are applied at the rckia (pin 20) and rckib (pin 29) inputs, respectively. the reference clock is required for the rate estimator function, as well as for the input or output serial ports when configured in master mode. figure 2 illustrates the reference clock connections and requirements for the src4194. when either the input or output port is configured in master mode, the reference clock may operate at 128f s , 256f s , or 512f s , where f s is the desired sampling rate for the master mode port. when both the input and output port are configured in slave mode, the reference clock does not have to be a multiple of the input or output sampling rates. the maximum reference clock input frequency is 50mhz for rckia and rckib. t rckip t rckih t rckil rcki src4194 rcki2 from external clock source(s) 50mhz max 29 rcki1 20 t rckip >20nsmin t rckih >0.4t rckip t rckil >0.4t rckip figure 2. reference clock input connections and timing requirements reset and power-down operation the src4194 may be reset using the rst input (pin 21). there is no internal power on reset, so the user should force a reset sequence after power up in order to initialize the device. in order to force a reset, the reference clock inputs must be active, with external clock sources supplying a valid reference clock signal (refer to figure 2). the user must assert rst low for a minimum of 500ns and then bring rst high again to force a reset. the reset function affects both src a and src b. figure 3 shows the reset timing for the src4194. in software mode, there is a 500ms delay after the rst rising edge due to internal logic requirements. the customer should wait a minimum 500ms after the rst rising edge before attempting to write to the spi port of the src4194 in software mode. rst rckia rckib t rstl > 500ns figure 3. reset pulsewidth requirement
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 22 the src4194 also supports two power-down modes. the entire src4194 may be powered down by forcing and holding the rst input low. this is referred to as a hard power-down, and the src4194 consumes the least amount of power in this mode. in software mode, there is an additional soft power-down available, utilizing the pdn bit in control register 1. soft power-down is enabled when the pdn bit is set to 0. since src a and src b have their own separate register banks, they may be set to soft power-down mode individually. during soft power-down, the spi port and control registers remain active for write and read access. the internal voltage regulator also remains active if the regen pin is forced high and +3.3v is applied at the vdd33 pin. soft power-down mode consumes more power than the hard power-down mode. refer to the electrical characteristics tables in this data sheet for supply current and power dissipation specifications for both modes. finally, there is one very important item to remember when using software mode. the default state of the pdn bit is 0, meaning that the src4194 will default to the soft power-down state for both src a and src b after power up or reset. the user must set the pdn bit to 1 for both the src a and src b control register banks in order to enable normal operation for both src sections. audio serial port modes the src4194 supports seven serial port modes for the src a and src b sections, which are shown in table 1. in hardware mode, the audio port mode is selected using the modea0 (pin 14), modea1 (pin 15), and modea2 (pin 16) inputs for src a, while the modeb0 (pin 35), modeb1 (pin 34), and modeb2 (pin 33) inputs are used for src b. in software mode, the audio serial port modes are selected using the mode[2:0] bits in control register 1 for the src a and src b register banks. the default setting for software mode is both input and output ports set to slave mode. in slave mode, the port lrck and bck clocks are configured as inputs, and receive their clocks from an external audio device. in master mode, the lrck and bck clocks are configured as outputs, being derived from the reference clock input for the corresponding src section, either rckia or rckib. only one port can be set to master mode at any given time, as indicated in table 1. table 1. setting the serial port modes (x = a or b) modex2 modex1 modex0 serial port mode 0 0 0 both input and output ports are slave mode 0 0 1 output port is master mode with rckix = 128f s 0 1 0 output port is master mode with rckix = 512f s 0 1 1 output port is master mode with rckix = 256f s 1 0 0 both input and output ports are slave mode 1 0 1 input port is master mode with rckix = 128f s 1 1 0 input port is master mode with rckix = 512f s 1 1 1 input port is master mode with rckix = 256f s input port operation the audio input port is a three-wire synchronous serial interface that may operate in either slave or master mode. the sdina (pin 58) and sdinb (pin 55) are the serial audio data inputs for src a and src b, respectively. audio data is input at these pins in one of three standard audio data formats: philips i 2 s, left-justified, or right-justified. the audio data word length may be up to 24-bits for i 2 s and left-justified formats, while the right-justified format supports 16-, 18-, 20-, or 24-bit data. the audio data is always binary two?s complement with the msb first. refer to figure 4 for the input data formats and figure 5 for the critical timing parameters, which are also listed in the electrical characteristics table. the bit clock is either an input or output at bckia (pin 60) and bckib (pin 53). in slave mode, the bit clock is configured as an input pin, and may operate at rates from 32f s to 128f s ,with a minimum of one clock cycle per data bit. in master mode, bit clock operates at a fixed rate of 64f s . the left/right word clock, lrckia (pin 59) and lrckib (pin 54), may be configured as an input or output pin. in slave mode, left/right clock is an input pin, while in master mode the left/right clock is an output pin. in either case, the clock rate is equal to f s , the input sampling frequency. the lrcki duty cycle is fixed to 50% for master mode operation.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 23 left channel (a) left?justified data format (b) right?justified data format right channel lrcki bcki sdin msb lsb lsb msb lrcki bcki sdin msb msb lsb lsb (c) i 2 sdataformat 1/f s lrcki bcki sdin msb lsb msb lsb figure 4. input data formats t lris t sih t ldis t sil t ldih lrcki bcki sdin figure 5. input port timing table 2 illustrates the data format selection for the input port. for hardware mode, the ifmta0 (pin 1), ifmta1 (pin 2), and ifmta2 (pin 3) inputs are utilized to set the input port data format for src a. ifmtb0 (pin 48), ifmtb1 (pin 47), and ifmtb2 (pin 46) are utilized to set the input port data format for src b. table 2. i nput port data format selection (x = a or b) ifmtx2 ifmtx1 ifmtx0 input port da ta format 0 0 0 24-bit left-justified 0 0 1 24-bit i 2 s 0 1 0 unused 0 1 1 unused 1 0 0 16-bit right-justified 1 0 1 18-bit right-justified 1 1 0 20-bit right-justified 1 1 1 24-bit right-justified in software mode, the ifmt[2:0] bits in control register 3 are used to select the data format for the src a and src b register banks. the default format is 24-bit left-justified.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 24 output port operation the audio output port is a four-wire synchronous serial interface that may operate in either slave or master mode. sdouta (pin 64) and sdoutb (pin 49) are the serial audio data outputs for src a and src b, respectively. audio data is output at these pins in one of four data formats: philips i 2 s, left-justified, right-justified, or tdm. the audio data word length may be 16-, 18-, 20-, or 24-bits. for all word lengths, the data is triangular pdf dithered from the internal 28-bit data path. the data formats (with the exception of tdm mode) are shown in figure 7, while critical timing parameters are shown in figure 6 and listed in the electrical characteristics table. the tdm format and timing are shown in figure 15 and figure 16, respectively, while examples of standard tdm configurations are shown in figure 17 and figure 18. the bit clock is either input or output at bckoa (pin 63) and bckob (pin 50). in slave mode, the bit clock is configured as an input pin, and may operate at rates from 32f s to 128f s , with a minimum of one clock cycle for each data bit. the exception is the tdm mode, where the bcko must operate at n 64f s , where n is equal to the number of src sections cascaded on the tdm bus. in master mode, the bit clock operates at a fixed rate of 64f s for all data formats except tdm, where bcko operates at the reference clock frequency. additional information regarding tdm mode operation is included in the applications information section of this data sheet. t soh t dopd t sol t doh lrcko bcko sdout figure 6. output port timing left channel (a)left?justifieddataformat (b) right?justified data format right channel lrcko bcko sdout msb lsb lsb msb lrcko bcko sdout msb msb lsb lsb (c) i 2 sdataformat 1/f s lrcko bcko sdout msb lsb msb lsb figure 7. output data formats
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 25 the left/right word clock, lrckoa (pin 62) and lrckob (pin 51), may be configured as an input or output pin. in slave mode, the left/right clock is an input pin, while in master mode it is an output pin. in either case, the clock rate is equal to f s , the output sampling frequency. the clock duty cycle is fixed to 50% for i 2 s, left-justified, and right-justified formats in master mode. the pulse width is fixed to 32-bit clock cycles for the tdm format in master mode. table 3 illustrates data format selection for the output port. in hardware mode, the ofmta0 (pin 4), ofmta1 (pin 5), owla0 (pin 6), and owla1 (pin 7) inputs are utilized to set the output port data format and word length for src a. the ofmtb0 (pin 45), ofmtb1 (pin 44), owlb0 (pin 43), and owlb1 (pin 42) inputs are utilized to set the output port data format and word length for src b. table 3. output port data format/word length selection (x = a or b) ofmtx1 ofmtx0 output port da ta format 0 0 left-justified 0 1 i 2 s 1 0 tdm 1 1 right-justified owlx1 owlx0 output port data word length 0 0 24 bits 0 1 20 bits 1 0 18 bits 1 1 16 bits in software mode, the ofmt[1:0] and owl[1:0] bits in control register 3 are used to select the data format and word length for the src a and src b register banks. the default format is left-justified data with a default word length of 24-bits. bypass mode the src4194 includes a bypass function for both src a and src b, which routes the input port data directly to the output port, bypassing the sample rate conversion block. bypass mode may be invoked by forcing bypa (pin 8) or bypb (pin 41) high in either hardware or software mode. in software mode, the bypass function may also be accessed using the bypass bit in control register 1 for the src a and src b register banks. for normal src operation, the bypass pins and control bits should be set to 0. no dithering is applied to the output data in bypass mode, and the digital attenuation, de-emphasis, and soft mute functions are also unavailable. bypass mode is useful for passing through compressed or encoded audio data, as well as non-audio data (that is, control or status information). interpolation filter group delay options the src4194 provides four group delay options for the digital interpolation filter, as shown in table 4. these options allow the user to tailor the group delay for a given application by selecting the number of input samples buffered prior to the re-sampling function. table 4. low group delay configuration (x = a or b) lgrpx1 lgrpx0 buffer size 0 0 64 samples 0 1 32 samples 1 0 16 samples 1 1 8 samples in hardware mode, the lgrpa0 (pin 9) and lgrpa1 (pin 10) inputs are used to select the group delay for src a, while lgrpb0 (pin 40) and lgrpb1 (pin 39) inputs are used for src b. in software mode, the lgrp[1:0] bits in control register 2 are used for the src a and src b register banks. the 64 sample buffer option is selected by default in software mode. direct downsampling option the src4194 decimation function allows the selection of a direct downsampling option, as shown in table 5. unlike the decimation filter, the direct downsampler does not provide anti-alias filtering. this makes the direct downsampler suitable for applications where the output sample rate is higher than the input sample rate. the advantage of the direct downsampler is that there is no group delay associated with the decimation function. table 5. decimation function configuration (x = a or b) ddnx decimation function 0 decimation filter enabled 1 direct downsampler enabled in hardware mode, the ddna (pin 11) input is used to select the direct downsampler for src a, while the ddnb (pin 38) input is used for src b. in software mode, the ddn bit in control register 2 is used to select the direct downsampler for the src a and src b register banks. the d ecimation filter is selected by default, with direct downsampling disabled.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 26 digital de-emphasis filter the src4194 includes digital de-emphasis filtering following the input serial ports. the de-emphasis filter processes audio data that has been pre-emphasized using the 50/15 s transfer function, commonly used in consumer and professional audio systems. pre-emphasis is utilized to increase the amplitude of the higher frequency components within the audio band. the de-emphasis filter normalizes the frequency response over the audio band. the src4194 supports three sampling frequencies for the de-emphasis filter: 32khz, 44.1khz, and 48khz. the de-emphasis filter can also be disabled. table 6 shows the configuration table for the de-emphasis filter options. table 6. digital de-emphasis filter configuration (x = a or b) demx1 demx0 de-emphasis fil ter function 0 0 disabled 0 1 48khz input sample rate 1 0 44.1khz input sample rate 1 1 32khz input sample rate in hardware mode, the dema0 (pin 12) and dema1 (pin 13) inputs are used to select the de-emphasis filter for src a, while demb0 (pin 37) and demb1 (pin 36) inputs are used for src b. in software mode, the dem[1:0] bits in control register 2 are used to select the de-emphasis filter in both the src a and src b register banks. de-emphasis filtering is disabled by default in software mode. soft mute function the soft mute function of the src4194 may be invoked by forcing the mutea (pin 19) or muteb (pin 30) inputs high. in software mode, the mute function may also be accessed using the mute bit in control register 1 for either the src a and src b register banks. the soft mute function slowly attenuates the output signal level down to an all zeros output. for normal output, the soft mute function should be disabled by forcing the control pin or bit low. the soft mute function is disabled by default in software mode. digital attenuation (software mode only) the src4194 includes independent digital attenuation for the left and right audio channels in software mode. the attenuation ranges from 0db (unity gain) to ?127.5db in 0.5db steps. the attenuation settings are programmed using control register 4 and control register 5 for either the src a and src b register banks. the attenuation setting is programmed to 0db (unity gain) by default. the track bit in control register 1 is used to select independent or tracking attenuation modes. when track = 0, the left and right channels are controlled independently. when track = 1, the attenuation setting for the left channel is also used for the right channel, providing a tracking function. the digital attenuation mode is set to independent by default. ready output the src4194 includes active low ready outputs for both src a and src b. the outputs are designated rdya (pin 18) and rdyb (pin 31). the ready output is provided from the rate estimator block, with a low output state indicating that the input-to-output sampling frequency ratio has been determined and that the coef ficients and address pointers for the re-sampling block have been updated. the ready signal may be used as a flag output for an external indicator or host. ratio output the src4194 includes a sampling ratio flag output for both src a and src b. the outputs are designated ratioa (pin 17) and ratiob (pin 32). when the ratio output is low, it indicates that the output sampling frequency is lower than the input sampling frequency. when ratio output is high, it indicates that the output sampling frequency is higher than the input sampling frequency. the ratio output can be used as a flag output for either an external indicator or host. sampling ratio readback (software mode only) in software mode, control registers 6 and 7 in either the src a and src b register banks function as status registers, which contain the integer and fractional part of the input-to-output sampling ratio, or f sin :f sout . given that f sout or f sin is known, the unknown sampling rate can be computed using the contents of registers 6 and 7. this function may be useful for controlling end application display or control processes. refer to the control register definition section of this datasheet for additional information regarding registers 6 and 7. serial peripheral interface (spi) port (software mode only) the spi port is a four-wire synchronous serial interface used to access the on-chip control registers of the src4194. the interface is comprised of a serial data clock input, cclk (pin 34); a serial data input, cdin (pin 33); a serial data output, cdout (pin 36); and an active low chip-select input, cs (pin 35). the cdout pin is a tri-state output and is forced to a high impedance state when the cs input is forced high.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 27 figure 8 illustrates the protocol for register write and read operations via the spi port. figure 9 shows the critical timing parameters for the spi port interface, which are listed in the electrical characteristics table. byte 0 indicates the register bank, register address, and read/write status for the operation. the functions contained within this byte are clearly shown in figure 8. it should be noted that either one or both of the src a and src b register banks may be written to in the same operation, but only one bank can be selected at any time for a read operation. byte 1 is a don?t care byte. this byte is included in the protocol in order to maintain compatibility with current and future texas instruments? digital audio interface products, including the dit4096, dit4192, and src4193. bytes 0 and 1 are followed by register data bytes. as shown in figure 8, a write or read operation starts by bringing the cs input low. bytes 0, 1, and 2 are then written to write or read a single register. byte 2 is not needed for reading registers, so the cdin pin can be forced low after byte 0 for a read operation. bringing the cs input high after the third byte will write or read a single register address. however, if cs remains low after writing or reading the first control or status byte, the port will automatically increment the address by 1, allowing successive addresses to be written or read sequentially. the address is automatically incremented by 1 after each byte is written or read, as long as the cs input remains low. this is referred to as auto-increment operation, and is always enabled for the spi port. set cs = 1 here to write/read one register location. keep cs = 0 to enable the auto?increment mode. byte 0 hi?z byte 1 hi?z byte 2 data for a[2:0] byte 3 data for a[2:0] + 1 byte n data for a[2:0] + n cs cdin cdout cclk byte 0: byte 1: don?t care byte 2 through byte n: register data byte definition: header register data register data rwb 0 0 sb sa a2 a1 a0 msb lsb set to 0. set to 0 for write; set to 1 for read. register bank select register address sb 0 0 1 1 sa 0 1 0 1 write access disabled src a src b src a and b read access disabled src a src b src b figure 8. spi protocol for the src4194 csb cclk cdin cdout hi?z hi?z t cscr t cfcs t cds t cfdo t csz t cdh figure 9. spi port timing
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 28 control register map (software mode only) the control register map for the src4194 is shown in table 7. there are two identical register banks, one for src a and one for src b, each conforming to the register map shown in table 7. register 0 is reserved for factory use and defaults to all zeros upon reset. the user should avoid writing to or reading this register, as unexpected operation may result if register 0 is programmed to an arbitrary value. register 1 through register 5 contain control bits, which are programmed to configure specific internal functions. register 1 through register 5 are available for write or read access. register 6 and register 7 contain the integer and fractional parts of the f sin :f sout sampling ratio and are read only status registers. table 7. control register map for either the src a or src b register banks register address (hex) d7 (msb) d6 d5 d4 d3 d2 d1 d0 0 0 0 0 0 0 0 0 0 1 pdn track 0 mute bypass mode2 mode1 mode0 2 0 0 0 dem1 dem0 ddn lgrp1 lgrp0 3 owl1 owl0 ofmt1 ofmt0 0 ifmt2 ifmt1 ifmt0 4 al7 al6 al5 al4 al3 al2 al1 al0 5 ar7 ar6 ar5 ar4 ar3 ar2 ar1 ar0 6 sri4 sri3 sri2 sri1 sri0 srf10 srf9 srf8 7 srf7 srf6 srf5 srf4 srf3 srf2 srf1 srf0
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 29 control register definitions (software mode only) this section contains descriptions for each control and status register available in software mode. reset defaults are also shown for each register bit. register 1. system control register d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) pdn track 0 mute bypass mode2 mode1 mode0 mode[2:0] audio serial port mode these bits are used to select the slave or master mode status of the input and output serial ports. mode2 mode1 mode0 audio serial port mode 0 0 0 both serial ports are in slave mode (default) 0 0 1 output serial port is master with rcki = 128f s 0 1 0 output serial port is master with rcki = 512f s 0 1 1 output serial port is master with rcki = 256f s 1 0 0 both serial ports are in slave mode 1 0 1 input serial port is master with rcki = 128f s 1 1 0 input serial port is master with rcki = 512f s 1 1 1 input serial port is master with rcki = 256f s bypass bypass mode this bit is logically or?d with the bypass input (bypa or bypb) for the corresponding src section. bypass function 0 bypass mode disabled with normal asrc operation. (default) 1 bypass mode enabled with data routed directly from the input port to the output port, bypass- ing the arsc function. mute output soft mute this bit is logically or?d with the mute input (mutea or muteb) for the corresponding src section. mute output mute function 0 soft mute disabled. (default) 1 soft mute enabled with output data attenuated to all 0s. track digital attenuation tracking track attenuation tracking 0 tracking off: attenuation for the left and right channels is controlled independently by con- trol register 4 and control register 5. (default) 1 tracking on: left channel attenuation setting is used for both channels. pdn power-down setting this bit to 0 will force the corresponding src section into soft power-down mode. all other register settings are preserved and the spi port remains active. setting this bit to 1 will power up the corresponding src section using the current register settings. this bit defaults to 0 on power-up or reset. it must be programmed to 1 by the user in order to enable normal operation for the corresponding src section.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 30 register 2. digital filter control register d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) 0 0 0 dem1 dem0 ddn lgrp1 lgrp0 lgrp0 interpolation filter group delay lgrp1 these bits are used to select the number of input samples to be stored in the data buf fer before the re-sampler starts to process the data. this has a direct impact on the group delay or latency of the interpolation filter. lgrp1 lgrp0 group delay 0 0 64 samples (default) 0 1 32 samples 1 0 16 samples 1 1 8 samples ddn decimation filtering/direct downsampling the ddn bit is used to enable or disable the direct downsampling function of the decimation block. ddn decimation filter operation 0 decimation filter enabled. (default) (must be used when f sout is less than or equal to f sin .) 1 direct downsampling enabled without filtering. (may be enabled when f sout is greater than f sin .) dem0 digital de-emphasis filtering dem1 these bits are used to configure the digital de-emphasis filter function. dem1 dem0 de-emphasis filter 0 0 disabled (default) 0 1 48khz input sampling rate 1 0 44.1khz input sampling rate 1 1 32khz input sampling rate
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 31 register 3. audio data format register d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) owl1 owl0 ofmt1 ofmt0 0 ifmt2 ifmt1 ifmt0 ifmt[2:0] input serial port data format these bits are utilized to select the audio data format for the input serial port. ifmt2 ifmt1 ifmt0 input format 0 0 0 24-bit, left-justified (default) 0 0 1 24-bit, i 2 s 0 1 0 reserved 0 1 1 reserved 1 0 0 right-justified, 16-bit data 1 0 1 right-justified, 18-bit data 1 1 0 right-justified, 20-bit data 1 1 1 right-justified, 24-bit data ofmt[1:0] output port data format these bits are utilized to select the audio data format for the output serial port. ofmt1 ofmt0 output format 0 0 left-justified (default) 0 1 i 2 s 1 0 tdm 1 1 right-justified owl[1:0] output port data word length owl1 owl0 output word length 0 0 24-bits (default) 0 1 20-bits 1 0 18-bits 1 1 16-bits
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 32 register 4. digital output attenuation register?left channel d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) al7 al6 al5 al4 al3 al2 al1 al0 this register is utilized to program the digital output attenuation for the left output channel of the corresponding src section. register defaults to 00h, or 0db (unity gain). output attenuation (db) = ?n 0.5, where n = al[7:0] dec register 5. digital output attenuation register?right channel d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) ar7 ar6 ar5 ar4 ar3 ar2 ar1 ar0 this register is utilized to program the digital output attenuation for the right output channel of the corresponding src section. when the track bit in control register 1 is set to 1, the left channel attenuation setting will also be used to set the right channel attenuation. register defaults to 00h, or 0db (unity gain). output attenuation (db) = ?n 0.5, where n = ar[7:0] dec register 6. sampling ratio (read only) d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) sri4 sri3 sri2 sri1 sri0 srf10 srf9 srf8 register 7. sampling ratio (read only) d7 (msb) d6 d5 d4 d3 d2 d1 d0 (lsb) srf7 srf6 srf5 srf4 srf3 srf2 srf1 srf0 the contents of register 6 and register 7 indicate the input-to-output sampling ratio, and can be used to determine either the input or output sampling rates when one of the two rates is known. bits sri[4:0] comprise the integer portion of the input-to-output sampling ratio. bits srf[10:0] comprise the fractional portion of the input-to-output sampling ratio. the contents of register 6 and register 7 are updated when register 6 is read. register 6 must always be read first in order to obtain the latest ratio data for both registers.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 33 applications information this section provides practical applications information for hardware and systems engineers who will be designing the src4194 into their end equipment. typical connections figure 10 and figure 11 illustrate typical connection diagrams for hardware and software modes, respectively. in hardware mode, dedicated pins are controlled using external logic circuitry, hardwiring pins high or low, or by using the general-purpose i/o pins of a microprocessor or dsp. in software mode, the src4194 is controlled via the 4-wire spi port and optional gpio from either a microprocessor or dsp. figure 12 illustrates the power-supply options for the src4194. when utilizing +3.3v for the core supply, the regen input (pin 26) must be driven high in order to enable the on-chip linear voltage regulator. the vdd33 pins are supplied with +3.3v and the vdd18 pins are left unconnected. when utilizing +1.8v for the core supply, the regen input (pin 26) must be driven low in order to disable the on-chip linear voltage regulator. the vdd18 pins are supplied with +1.8v and the vdd33 pins are left unconnected. recommended power-supply bypass capacitor values are shown in figure 10 through figure 12. ceramic capacitors (x7r chip type) are recommended for the 0.1 f capacitors, while the 10 f capacitors may be tantalum or multi-layer x7r ceramic chip type, or through-hole or surface-mount aluminum electrolytic capacitors. sdouta bckoa lrckoa tdmia bckia lrckia sdina dgnd v io ifmta0 ifmta1 ifmta2 ofmta0 ofmta1 owla0 owla1 bypa lgrpa0 lgrpa1 ddna dema0 dema1 modea0 modea1 modea2 ratioa rdya mutea rckia rst h/s dgnd vdd33 vdd33 regen 64 63 62 61 60 59 58 57 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 src4194 sdoutb bckob lrckob tdmib bckib lrckib sdinb ifmtb0 ifmtb1 ifmtb2 ofmtb0 ofmtb1 owlb0 owlb1 bypb lgrpb0 lgrpb1 ddnb demb0 demb1 modeb0 modeb1 modeb2 ratiob rdyb muteb rckib vdd18 vdd18 49 50 51 52 53 54 55 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 digital audio i/o (dir, dit, dsp) control logic, p, o r hardwired i/o digital audio i/o (dir, dit, dsp) control logic, p, o r hardwired i/o v io supply 0.1 f 10 f from reference source clock refertofigure12 refer to figure 12 from reference clock source from system or external reset + figure 10. typical pin connections for hardware mode operation
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 34 sdouta bckoa lrckoa tdmia bckia lrckia sdina dgnd v io ifmta0 ifmta1 ifmta2 ofmta0 ofmta1 owla0 owla1 bypa lgrpa0 lgrpa1 ddna dema0 dema1 modea0 modea1 modea2 ratioa rdya mutea rckia rst h/s dgnd vdd33 vdd33 regen 64 63 62 61 60 59 58 57 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 src4194 sdoutb bckob lrckob tdmib bckib lrckib sdinb ifmtb0 ifmtb1 ifmtb2 ofmtb0 ofmtb1 owlb0 owlb1 bypb lgrpb0 lgrpb1 ddnb demb0 cdout cs cclk cdin ratiob rdyb muteb rckib vdd18 vdd18 49 50 51 52 53 54 55 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 digital audio i/o (dir, dit, dsp) host processor with spi port and gpio digital audio i/o (dir, dit, dsp) v io supply 0.1 f 10 f from reference source clock refertofigure12 refertofigure12 from reference clock source from system or external reset or host processor to/from host processor + figure 11. typical pin connections for software mode operation src4194 vdd33 vdd33 dgnd vdd18 vdd18 regen 24 25 23 27 28 26 + + 0.1 f 10 f 0.1 f 10 f +1.8v +3.3v install jumper jmp1 and associated bypass capacitors only if +3.3v will be used as the core voltage. install jumper jmp2 and associated bypass capacitors only if +1.8v will be used as the core voltage. drive low when using a +1.8v core supply at the vdd18 pins. drive high when using a +3.3v core supply at the vdd33 pin in order to enable the on?chip +1.8v linear voltage regulator. figure 12. core power-supply connection options
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 35 interfacing to digital audio receivers and transmitters the src4194 input and output ports are designed to interface to a variety of audio devices, including receivers and transmitters commonly used for aes/ebu, s/pdif, and cp1201 communications. texas instruments manufactures the dir1703 digital audio interface receiver and dit4096/4192 digital audio transmitters to address these applications. figure 13 illustrates interfacing the dir1703 to the src4194 input port. the dir1703 operates from a single +3.3v supply, which requires that the v io supply (pin 56) for the src4194 to be set to +3.3v for interface compatibility. dir1703 lrcko bcko data scko lrcki bcki sdin src4194 rcli clock select assumes v io = +3.3v for src4194. clock generator rcv din aes3, s/pdif input rs?422 receiver figure 13. interfacing the src4194 to the dir1703 digital audio interface receiver figure 14 shows the interface between the src4194 output port and the dit4096 or dit4192 audio serial port. once again, the v io supplies for both the src4194 and dit4096/4192 are set to +3.3v for interface compatibility. src4194 lrcko bcko sdout rcki sync sclk sdata dit4096, dit4192 mclk clock select assumes v io = +3.3v for src4194 and dit4096, dit4192. ref clock generator dit clock generator tx+ tx ? aes3, s/pdif output figure 14. interfacing the src4194 to the dit4096/4192 digital audio interface receiver like the src4194 output ports, the dit4096 and dit4192 audio serial ports may be configured as a master or slave. in cases where the src4194 output port is set to master mode and the dit4096/4192 is configured as the slave, it is recommended to use the reference clock source for the corresponding section of the src4194 as the master clock source for the dit4096/4192. this will ensure that the transmitter audio serial port clocks, sync and sclk, are synchronized to the master clock source.
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 36 tdm applications the src4194 supports a tdm output mode, which allows multiple devices to be daisy-chained together to create a serial frame. each device occupies one sub-frame within a frame, and each sub-frame carries two channels (left followed by right). each sub-frame is 64 bits long, with 32 bits allotted for each channel. the audio data for each channel is left-justified within the allotted 32 bits. figure 16 illustrates the tdm frame format, while figure 15 shows tdm input timing parameters, which are listed in the electrical characteristics table of this data sheet. t lros t tdms t lroh t tdmh lrcko bcko tdmi figure 15. input timing for tdm mode the frame rate is equal to the output sampling frequency, f s . the bcko frequency for the tdm interface is n 64f s , where n is the number of src sections included in the daisy-chain. for master mode, the output bcko frequency is fixed to the reference clock input frequency. the number of devices that can be daisy-chained in tdm mode is dependent upon the output sampling frequency and the bit clock frequency, leading to the following numerical relationship. number of daisy-chained src sections = (f bcko /f s )/64 where: f bcko = output port bit clock (bcko), 27mhz maximum f s = output port sampling (or lrcko) frequency, 212khz maximum. this relationship holds true for both slave and master modes. figure 17 and figure 18 show typical connection schemes for tdm mode. although the tms320c671x dsp family is shown as the audio processing engine in these figures, other ti digital signal processors with a multi-channel buffered serial port (mcbsp ? ) may also function with this arrangement. interfacing to processors from other manufacturers is also possible. refer to the timing diagrams in this data sheet, along with the equivalent serial port timing diagrams shown in the dsp data sheet to determine compatibility. lrcko bcko sdout n = number of daisy?chained devices one sub?frame contains 64 bits, with 32 bits per channel. for each channel, the audio data is left?justified, msb?first format, with the word length determined by the owl[1:0] pins/bits. left right sub?frame 1 sub?frame 2 sub?frame n one frame = 1/f s left right left right figure 16. tdm frame format
sbfs025a ? june 2004 ? revised july 2004 www.ti.com 37 tdmi src4194 slave #n sdout lrcko bcko rcki tdmi src4194 src2 section slave #2 sdout lrcko bcko rcki tdmi src4194 src1 section slave #1 sdout lrcko bcko rcki drn fsrn clkrn clkin or clksn tms320c671x mcbsp clock generator n=0or1 figure 17. tdm interface where all devices are slaves tdmi src4194 src1 section master sdout lrcko bcko rcki tdmi src4194 src2 section slave sdout lrcko bcko rcki tdmi src4194 slave #1 sdout lrcko bcko rcki drn fsrn clkrn clkin or clksn tms320c671x mcbsp clock generator n=0or1 figure 18. tdm interface where one device is master to multiple slaves
packaging information orderable device status(1) package type package drawing pins package qty src4194ipag active tqfp pag 64 160 SRC4194IPAGR active tqfp pag 64 1500 src4194ipagt active tqfp pag 64 250 (1) the marketing status values are defined as follows: active: product device recommended for new designs. lifebuy: ti has announced that the device will be discontinued, and a lifetime-buy period is in effect. nrnd: not recommended for new designs. device is in production to support existing customers, but ti does not recommend using this part in a new design. preview: device has been announced but is not in production. samples may or may not be available. obsolete: ti has discontinued the production of the device. package option addendum www.ti.com 17-aug-2004
mechanical data mtqf006a january 1995 revised december 1996 1 post office box 655303 ? dallas, texas 75265 pag (s-pqfp-g64) plastic quad flatpack 0,13 nom 0,25 0,45 0,75 seating plane 0,05 min 4040282 / c 11/96 gage plane 33 0,17 0,27 16 48 1 7,50 typ 49 64 sq 9,80 1,05 0,95 11,80 12,20 1,20 max 10,20 sq 17 32 0,08 0,50 m 0,08 0 7 notes: a. all linear dimensions are in millimeters. b. this drawing is subject to change without notice. c. falls within jedec ms-026
important notice texas instruments incorporated and its subsidiaries (ti) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. all products are sold subject to ti?s terms and conditions of sale supplied at the time of order acknowledgment. ti warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with ti?s standard warranty. testing and other quality control techniques are used to the extent ti deems necessary to support this warranty. except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. ti assumes no liability for applications assistance or customer product design. customers are responsible for their products and applications using ti components. to minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. ti does not warrant or represent that any license, either express or implied, is granted under any ti patent right, copyright, mask work right, or other ti intellectual property right relating to any combination, machine, or process in which ti products or services are used. information published by ti regarding third-party products or services does not constitute a license from ti to use such products or services or a warranty or endorsement thereof. use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ti under the patents or other intellectual property of ti. reproduction of information in ti data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. reproduction of this information with alteration is an unfair and deceptive business practice. ti is not responsible or liable for such altered documentation. resale of ti products or services with statements different from or beyond the parameters stated by ti for that product or service voids all express and any implied warranties for the associated ti product or service and is an unfair and deceptive business practice. ti is not responsible or liable for any such statements. following are urls where you can obtain information on other texas instruments products and application solutions: products applications amplifiers amplifier.ti.com audio www.ti.com/audio data converters dataconverter.ti.com automotive www.ti.com/automotive dsp dsp.ti.com broadband www.ti.com/broadband interface interface.ti.com digital control www.ti.com/digitalcontrol logic logic.ti.com military www.ti.com/military power mgmt power.ti.com optical networking www.ti.com/opticalnetwork microcontrollers microcontroller.ti.com security www.ti.com/security telephony www.ti.com/telephony video & imaging www.ti.com/video wireless www.ti.com/wireless mailing address: texas instruments post office box 655303 dallas, texas 75265 copyright ? 2004, texas instruments incorporated


▲Up To Search▲   

 
Price & Availability of SRC4194IPAGR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X